Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 264: 116020, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086193

RESUMO

The development of new antiviral agents such as nucleoside analogues or acyclic nucleotide analogues (ANPs) and prodrugs thereof is an ongoing task. We report on the synthesis of three types of lipophilic triphosphate analogues of (R)-PMPA and dialkylated diphosphate analogues of (R)-PMPA. A highly selective release of the different nucleotide analogues ((R)-PMPA-DP, (R)-PMPA-MP, and (R)-PMPA) from these compounds was achieved. All dialkylated (R)-PMPA-prodrugs proved to be very stable in PBS as well as in CEM/0 cell extracts and human plasma. In primer extension assays, both the monoalkylated and the dialkylated (R)-PMPA-DP derivatives acted as (R)-PMPA-DP as a substrate for HIV-RT. In contrast, no incorporation events were observed using human polymerase γ. The dialkylated (R)-PMPA-compounds exhibited significant anti-HIV efficacy in HIV-1/2 infected cells (CEM/0 and CEM/TK-). Remarkably, the dialkylated (R)-PMPA-MP derivative 9a showed a 326-fold improved activity as compared to (R)-PMPA in HIV-2 infected CEM/TK- cells as well as a very high SI of 14,000. We are convinced that this study may significantly contribute to advancing antiviral agents developed based on nucleotide analogues in the future.


Assuntos
Fármacos Anti-HIV , Organofosfonatos , Pró-Fármacos , Humanos , Tenofovir/farmacologia , Fármacos Anti-HIV/química , Organofosfonatos/química , Adenina , HIV-2 , Nucleotídeos , Pró-Fármacos/química
2.
Bioorg Chem ; 138: 106607, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37210829

RESUMO

Growth factor receptor bound protein 2 (Grb2) is an adaptor protein featured by a nSH3-SH2-cSH3 domains. Grb2 finely regulates important cellular pathways such as growth, proliferation and metabolism and a minor lapse of this tight control may totally change the entire pathway to the oncogenic. Indeed, Grb2 is found overexpressed in many tumours type. Consequently, Grb2 is an attractive therapeutic target for the development of new anticancer drug. Herein, we reported the synthesis and the biological evaluation of a series of Grb2 inhibitors, developed starting from a hit-compound already reported by this research unit. The newly synthesized compounds were evaluated by kinetic binding experiments, and the most promising derivatives were assayed in a short panel of cancer cells. Five of the newly synthesized derivatives proved to be able to bind the targeted protein with valuable inhibitory concentration in one-digit micromolar concentration. The most active compound of this series, derivative 12, showed an inhibitory concentration of about 6 µM for glioblastoma and ovarian cancer cells, and an IC50 of 1.67 for lung cancer cell. For derivative 12, the metabolic stability and the ROS production was also evaluated. The biological data together with the docking studies led to rationalize an early structure activity relationship.


Assuntos
Antineoplásicos , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/metabolismo , Sequência de Aminoácidos , Ligação Proteica , Antineoplásicos/farmacologia , Relação Estrutura-Atividade
3.
Circ Res ; 132(3): 290-305, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36636919

RESUMO

BACKGROUND: SARS-CoV-2 is associated with an increased risk of venous and arterial thrombosis, but the underlying mechanism is still unclear. METHODS: We performed a cross-sectional analysis of platelet function in 25 SARS-CoV-2 and 10 healthy subjects by measuring Nox2 (NADPH oxidase 2)-derived oxidative stress and thromboxane B2, and investigated if administration of monoclonal antibodies against the S protein (Spike protein) of SARS-CoV-2 affects platelet activation. Furthermore, we investigated in vitro if the S protein of SARS-CoV-2 or plasma from SARS-CoV-2 enhanced platelet activation. RESULTS: Ex vivo studies showed enhanced platelet Nox2-derived oxidative stress and thromboxane B2 biosynthesis and under laminar flow platelet-dependent thrombus growth in SARS-CoV-2 compared with controls; both effects were lowered by Nox2 and TLR4 (Toll-like receptor 4) inhibitors. Two hours after administration of monoclonal antibodies, a significant inhibition of platelet activation was observed in patients with SARS-CoV-2 compared with untreated ones. In vitro study showed that S protein per se did not elicit platelet activation but amplified the platelet response to subthreshold concentrations of agonists and functionally interacted with platelet TLR4. A docking simulation analysis suggested that TLR4 binds to S protein via three receptor-binding domains; furthermore, immunoprecipitation and immunofluorescence showed S protein-TLR4 colocalization in platelets from SARS-CoV-2. Plasma from patients with SARS-CoV-2 enhanced platelet activation and Nox2-related oxidative stress, an effect blunted by TNF (tumor necrosis factor) α inhibitor; this effect was recapitulated by an in vitro study documenting that TNFα alone promoted platelet activation and amplified the platelet response to S protein via p47phox (phagocyte oxidase) upregulation. CONCLUSIONS: The study identifies 2 TLR4-dependent and independent pathways promoting platelet-dependent thrombus growth and suggests inhibition of TLR4. or p47phox as a tool to counteract thrombosis in SARS-CoV-2.


Assuntos
COVID-19 , Trombose , Humanos , Anticorpos Monoclonais/farmacologia , Plaquetas/metabolismo , COVID-19/metabolismo , Estudos Transversais , SARS-CoV-2 , Trombose/etiologia , Trombose/metabolismo , Tromboxanos/metabolismo , Tromboxanos/farmacologia , Receptor 4 Toll-Like/metabolismo
4.
Eur J Med Chem ; 240: 114605, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35868126

RESUMO

Most cancer cells switch their metabolism from mitochondrial oxidative phosphorylation to aerobic glycolysis to generate ATP and precursors for the biosynthesis of key macromolecules. The aerobic conversion of pyruvate to lactate, coupled to oxidation of the nicotinamide cofactor, is a primary hallmark of cancer and is catalyzed by lactate dehydrogenase (LDH), a central effector of this pathological reprogrammed metabolism. Hence, inhibition of LDH is a potential new promising therapeutic approach for cancer. In the search for new LDH inhibitors, we carried out a structure-based virtual screening campaign. Here, we report the identification of a novel specific LDH inhibitor, the pyridazine derivative 18 (RS6212), that exhibits potent anticancer activity within the micromolar range in multiple cancer cell lines and synergizes with complex I inhibition in the suppression of tumor growth. Altogether, our data support the conclusion that compound 18 deserves to be further investigated as a starting point for the development of LDH inhibitors and for novel anticancer strategies based on the targeting of key metabolic steps.


Assuntos
L-Lactato Desidrogenase , Neoplasias , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Glicólise , Humanos , L-Lactato Desidrogenase/metabolismo , Ácido Láctico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação Oxidativa
5.
Proteins ; 90(9): 1714-1720, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35437825

RESUMO

Chemokine (C-C motif) receptor-like 2 (CCRL2), is a seven transmembrane receptor closely related to the chemokine receptors CCR1, CCR2, CCR3, and CCR5. Nevertheless, CCRL2 is unable to activate conventional G-protein dependent signaling and to induce cell directional migration. The only commonly accepted CCRL2 ligand is the nonchemokine chemotactic protein chemerin (RARRES2). The chemerin binding to CCLR2 does induce leukocyte chemotaxis, yet, genetic targeting of CCRL2 was shown to modulate the inflammatory response in different experimental models. This mechanism was shown to be crucial for lung dendritic cell migration, neutrophil recruitment, and Natural Killer cell-dependent immune surveillance in lung cancer. To gain more insight in the interactions involved in the CCRL2-chemerin, the binding complexes were generated by protein-protein docking, then submitted to accelerated molecular dynamics. The obtained trajectories were inspected by principal component analyses followed by kernel density estimation to identify the ligand-receptor regions most frequently involved in the binding. To conclude, the reported analyses led to the identification of the putative hot-spot residues involved in CCRL2-chemerin binding.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Simulação de Dinâmica Molecular , Quimiocinas/genética , Quimiocinas/metabolismo , Ligantes , Receptores CCR/genética , Receptores CCR/metabolismo
6.
Cancers (Basel) ; 14(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35267666

RESUMO

Wingless/integrase-11 (WNT)/ß-catenin pathway is a crucial upstream regulator of a huge array of cellular functions. Its dysregulation is correlated to neoplastic cellular transition and cancer proliferation. Members of the Dishevelled (DVL) family of proteins play an important role in the transduction of WNT signaling by contacting its cognate receptor, Frizzled, via a shared PDZ domain. Thus, negative modulators of DVL1 are able to impair the binding to Frizzled receptors, turning off the aberrant activation of the WNT pathway and leading to anti-cancer activity. Through structure-based virtual screening studies, we identified racemic compound RS4690 (1), which showed a promising selective DVL1 binding inhibition with an EC50 of 0.74 ± 0.08 µM. Molecular dynamic simulations suggested a different binding mode for the enantiomers. In the in vitro assays, enantiomer (S)-1 showed better inhibition of DVL1 with an EC50 of 0.49 ± 0.11 µM compared to the (R)-enantiomer. Compound (S)-1 inhibited the growth of HCT116 cells expressing wild-type APC with an EC50 of 7.1 ± 0.6 µM and caused a high level of ROS production. These results highlight (S)-1 as a lead compound for the development of new therapeutic agents against WNT-dependent colon cancer.

7.
Biol Direct ; 16(1): 15, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641953

RESUMO

The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein-protein interaction modules, involved in several cellular pathways such as signal transduction, cell-cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.


Assuntos
Neoplasias , Viroses , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/genética , Domínios PDZ , Ligação Proteica , Proteínas
8.
Eur J Med Chem ; 221: 113532, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34052717

RESUMO

Long-term survivors of glioblastoma multiforme (GBM) are at high risk of developing second primary neoplasms, including leukemia. For these patients, the use of classic tyrosine kinase inhibitors (TKIs), such as imatinib mesylate, is strongly discouraged, since this treatment causes a tremendous increase of tumor and stem cell migration and invasion. We aimed to develop agents useful for the treatment of patients with GBM and chronic myeloid leukemia (CML) using an alternative mechanism of action from the TKIs, specifically based on the inhibition of tubulin polymerization. Compounds 7 and 25, as planned, not only inhibited tubulin polymerization, but also inhibited the proliferation of both GMB and CML cells, including those expressing the T315I mutation, at nanomolar concentrations. In in vivo experiments in BALB/cnu/nu mice injected subcutaneously with U87MG cells, in vivo, 7 significantly inhibited GBM cancer cell proliferation, in vivo tumorigenesis, and tumor growth, tumorigenesis and angiogenesis. Compound 7 was found to block human topoisomerase II (hTopoII) selectively and completely, at a concentration of 100 µM.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Glioblastoma/tratamento farmacológico , Compostos Heterocíclicos/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Metano/farmacologia , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Metano/análogos & derivados , Metano/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Células Tumorais Cultivadas
9.
Cells ; 9(11)2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171874

RESUMO

Gab2 is a scaffolding protein, overexpressed in many types of cancers, that plays a key role in the formation of signaling complexes involved in cellular proliferation, migration, and differentiation. The interaction between Gab2 and the C-terminal SH3 domain of the protein Grb2 is crucial for the activation of the proliferation-signaling pathway Ras/Erk, thus representing a potential pharmacological target. In this study, we identified, by virtual screening, seven potential inhibitor molecules that were experimentally tested through kinetic and equilibrium binding experiments. One compound showed a remarkable effect in lowering the affinity of the C-SH3 domain for Gab2. This inhibitory effect was subsequently validated in cellula by using lung cancer cell lines A549 and H1299. Our results are discussed under the light of previous works on the C-SH3:Gab2 interaction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/metabolismo , Domínios de Homologia de src , Linhagem Celular Tumoral , Fluorescência , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Reprodutibilidade dos Testes
10.
J Comput Aided Mol Des ; 34(11): 1171-1179, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32700175

RESUMO

The exchange proteins activated by cAMP (EPAC) are implicated in a large variety of physiological processes and they are considered as promising targets for a wide range of therapeutic applications. Several recent reports provided evidence for the therapeutic effectiveness of the inhibiting EPAC1 activity cardiac diseases. In that context, we recently characterized a selective EPAC1 antagonist named AM-001. This compound was featured by a non-competitive mechanism of action but the localization of its allosteric site to EPAC1 structure has yet to be investigated. Therefore, we performed cosolvent molecular dynamics with the aim to identify a suitable allosteric binding site. Then, the docking and molecular dynamics were used to determine the binding of the AM-001 to the regions highlighted by cosolvent molecular dynamics for EPAC1. These analyses led us to the identification of a suitable allosteric AM-001 binding pocket at EPAC1. As a model validation, we also evaluated the binding poses of the available AM-001 analogues, with a different biological potency. Finally, the complex EPAC1 with AM-001 bound at the putative allosteric site was further refined by molecular dynamics. The principal component analysis led us to identify the protein motion that resulted in an inactive like conformation upon the allosteric inhibitor binding.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/química , Solventes/química , Sítio Alostérico , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...